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ABSTRACT

This brief note points out that the method of quadratic interpolation ,

which has been recommended in the literature for minimizing a function of one

variable, can be very undependable. In particular, unless the function being

minimized is itself quadratic, the method may break down no matter how close

to the minimizer one starts.
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SIGNIFICANCE AND EXPLANATION

In many practical applications we have to find numerically the minimum

or maximum value of a function of one variable : an example might be a

statistical estimation problem in which we try to find the value of a parameter

which maximizes the likelihood function.

A simple method which has been recommended in the literature is to find

the function values at three distinct points, then fit a quadratic function

(a parabola) to these. The maximum or minimum value of this quadratic function

is then found, together with the point at which it is attained, and this point

is used together with two of the original three points to repeat the process.

This note points out that unless the function being minimized is itself

quadratic, the above algorithm may break down (the new point may be one of the

original three even though none of these minimizes the function). Even if the

method does not break down, it may provide inaccurate answers because of the

effects of roundoff error. Thus, it could be unwise to use this method.
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Let f be a function from p into itself. In this note we study some properties of

the following algorithm for finding a minimum of f if one exists:

QUADRATIC INTERPOLATION ALGORI THM: Given th ree dist inct point s x0 < x 1 < x 2 , and

the values of f at these points, f ind  the uniaue polynomial P of degree no greater

than 2 which agrees with f at x
0
, x1 and x2. If P has a minimum , let x3 be

a minimizer of P~ replace one of x
0, x1, x2 by x3 to obtain three new points;

stop or repeat the process.

The replacement may be done according to any one of several rules : discard the “oldest”

point , discard the point with the greatest function value, etc. Also, various stopping rules

may be applied to halt the algorithm at an appropriate step. For example, see the discussion

in (1, pp. 605-6061 , in which the rule used would specify, for our formulation , that the

three retained points z0 
< z1 

< z2 satisfy f(z
1
) < min{f(z

0
), f(z

2)}. It is stated there

that the use of this rule will produce a sequence of points infinitely many of which are

within any given tolerance of a minimizer of f (the authors of (1) phrase their discussion

in terms of maximization, but this has no effect on the development). As the function illus-

trated in their Fig. 13.21 (1, p. 605] is unimodal, one might suppose that they mean for

their statement to be interpreted in terms of such a function. No discussion is given in

(11 of the rate at which the asserted convergence occurs, but this question is examined in

(2, §2.3), where an argument is made with a view to establishing such a rate.

In what follows, we shall show that unless the function f is itself quadratic ,

this method may break down, no matter how close to a minimizer of f the initial points are

chosen : that is, the new point obtained from the algorithm may be one of the current three

points even though none of these is the minimizer. Next we discuss briefly the numerical

problems to which the method is subject even when it does not break down . It wi l l  be

apparent from these considerations that the quadratic interpolation method is unlikely to be

the algorithm of choice in most applications.
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In the following proposition, we suppose that we are dealing with a unimodal function

f: i.e., one for which there is a point x,~ € P with the property that for x1
, x

2 in the

domain of f, if x
1 

< x~ < x~ then f(x1
) > f(x

2), and if x~ < x
1 

< x2 then

f(x
1
) < f(x2). Evidently x~, is then the unique minimizer of f.

PROPOSITION : Let x* 
S P and let c > 0. Suppose f is a continuous, unimodal

function from the interval I := (x
~ 

— c , x* 
+ €] to P with minimizer x~

. Unless f

agrees with some quadratic function on I, there exist points x0 
< x

1 
< x2 in the inter—

val I, with x1 * x~ . such that the quadratic function Q interpolating f at these

three points has x
1 

as its unique minimizer.

Thus, unless f is actually quadratic near its minimizer x*, the algorithm may break

down.

P~~OF: We distinguish two cases. For the first case, suppose that there is some

n s (O,r] with f(x, — # f (x~ + ri). For convenience assume that f(x
~ 

— 
~) < f(x~ + ,

~~
) ,

and let x
0
; = x, - n. As f is continuous and strictly increasing on (x~ , x,, + ni , there

is a point x2 € (xe , x, + ri) with f(x2) f(x0) (x2 lies in the open interval because

< f(x~) < f(x~ + rfl). Now let x1
: = 4(x0 + x2); evidently x0 < x1 < x~ < x2

, so

f(x
1
) < f (x0) = f(x2

) by unimodality. It is easy to verify that the unique quadratic func-

tion Q agreeing with f at x0 , x1 and x2 attains its minim um only at x
1
. The argu-

ment for the case f(x, — n) > f(x~ + r~) is similar, and this completes the proof of the

first case.

In the second case, we know that f(x, — — f(x~ + q) for each r~ € (0,c) but that

f does not agree with any quadratic on I. For brevity, write x
L : x,, - e and

X
R 

:= x ,,, + C. Of course, f(x
L
) f(xR

) > Now consider the family of quadratic

functions in x defined by

Q(y;x) := f (x
L)(-3~~~

) 
+ f(y) [1 

- 
(.

~~~.)2]
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whi re y In i IIVef l  point in (x
1
, x~) . The fiinct ion O(y; .) interpolates f a t  x 1 and

at y,  and it has a unique minimizer at y .

Since f does not agree with any quadratic on [X
L
i XR]~ 

it certainly does not agree

with  Q( x~ ; .) there, and so there is some point z € [x
i. X~~] with f(z) * Q(x5 ; z). A

quick computation shows that Q(x~ ; xR) — f(x
R). so actually z € (X

L
. xx). and by symmetry

we can suppose tha t z € lx ,,, xR). Assume first that f(s) < Qbc
~

; z). Evidently the func-

tion of y given by Q(y;z) is continuous for y € (x
L i xR). 

so we can find x1 € (x,,, z)

with Q (x
1; z) > f(z). We have f(x1) < f (xi) by unimsodality and f(xR) = f(xL) by symmetry ,

so

I fx -x 21
Q(x1; x~) — f(x

R
) = jf(x

1) — f(x
L
)] 1 — 

x
~
_x
~i) 

< 0

Thus the continuous function Q(x1
; • )  — f(.) is positive at z but negative at X

~~
, ~~~

there is some x
2 € (z, xR) with Q(x

1; x2
) = f(x

2). Thus, with x0 : XL we find that

x0 
< x1 

< x
2
, that Q (x1

; ~) interpolates f at these three points and has its unique

minimizer at x1, but that x1 > x,,.

If f ( s )  > Q ( x ,,; z) then we choose € (x],. x~) with Q(x1; z) < f(s); we then

find that Q (x1; X E) ~ 
f(x

R) so that a similar argument applies. This completes the proof.

We have shown that the quadratic interpolation method may break down; even if it does

not do so, numerical difficulties are likely to prevent one from finding a very accurate

estimate of the minimizer. These difficulties are well known to any experienced numerical

analyst. They are shared by all methods using only function values, and are illustrated by

the problem of minimizing 1 + x2: it is easy to see that if one works to 2N significant

figures, the computed function value for any point in the interval 1-2 X 10-N 2 x

will be 1. Thus one cannot expect to be able to determine the minimizer to within more than

about half the number of significant digits carried by the machine. This loss of significance

does not occur with methods which attempt to find a zero of the first derivative (e.g.,

Newton ’s method or the secant method), since near a nondegenerate minimizer the absolute

—3—



value of the first derivative will be roughly proportional to the distance to the minimizer

instead of to the square of that distance. Thus, when derivatives are available it is

generally wise to make use of them. Even when only function values can be computed , the use

of a reliable search method (e.g., golden section search) seems likely to be safer than

quadratic interpolation because search algorithms are not subject to the breakdown property

discussed above.
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